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Abstract

A generalized nonlinear time-varying (NLTV) dynamic model of a hypoid gear pair with backlash nonlinearity is

formulated which is also applicable to spur, helical, spiral bevel and worm gears. Firstly, the fundamental harmonic form

of time-varying mesh parameters is used to study the effects of mesh parameter variations on the dynamic response, and

the interactions between them and backlash nonlinearity. The analysis also examines the effects of mean load and mesh

damping. Secondly, based on a three-dimensional quasi-static tooth contact analysis, a new significantly more exact

time-varying mesh model is proposed, which describes the true mesh characteristics of hypoid gear pairs. The enhanced

time-varying mesh model is applied to perform further dynamic analysis. Computational results reveal numerous

interesting nonlinear characteristics, such as jump discontinuities, sub-harmonic and chaotic behaviors, especially for

lightly loaded and lightly damped cases.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Gear pair dynamics is one of the most important factors affecting the noise, vibration and durability
performances of gearboxes, drivetrains and power transmission systems. Owing to the high sensitivity of the
gear pair to its tooth profile errors, shaft misalignment, and overall structural dynamics, the vibratory
response can be very complex and not easy to control. Therefore, gaining a more thorough understanding of
the underlying physics governing the gear pair dynamics is essential in the design and development of quieter
and more durable geared rotor systems. In this paper, we focus mainly on the dynamics of high-speed,
precision hypoid gear pairs often used in automotive and aerospace power transmission systems.

Although parallel axis gear dynamics has been studied extensively [1–7], limited investigations [8–12] can be
found on the dynamics of non-parallel axis gears such as hypoid and bevel gears on account of the complexity
of gear kinematics and meshing characteristics. Most of the models on hypoid gear dynamics are limited to
experimental or simple, semi-analytical formulation, and the effects of time-varying mesh characteristics are
either not considered or only approximately represented. Remmers [8] studied the mass-elastic model of rear
axle gears with infinite mesh stiffness to predict the pinion resonance and carried out experiments to confirm
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

b gear backlash
cm mesh damping coefficient
e kinematic transmission error
f nonlinear displacement function
Ip, Ig mass moments of inertias of pinion and

gear
j
*

l unit vector along pinion/gear rotating
axis

k, km mesh stiffness
me equivalent mass
n
*

l unit normal vector of mesh point
p difference between dynamic transmission

error and kinematic transmission error
r
*

l position vector of mesh point
Sl coordinate system for dynamic formula-

tion
t time
Tp, Tg mean load torques on pinion and gear

d dynamic transmission error
Z system parameter
ll directional rotation radius
x mesh damping ratio
f phase angle
o excitation frequency

Subscripts

l label for pinion (l ¼ p) and gear (l ¼ g)
a1 fundamental harmonic
m mean
n natural

Superscripts

� dimensionless quantities
, vector quantities
0 derivative with respect to time

J. Wang et al. / Journal of Sound and Vibration 308 (2007) 302–329 303
the vibration peaks. Kiyono et al. [9] derived a two degrees-of-freedom (dofs) vibration model of a pair of
bevel gears in which the line-of-action vector was simulated by a sine curve, and applied the model to conduct
a stability analysis. Abe and Hagiwara [10] found that axle gear noise could be reduced by modifying the
vibration mode with the addition of an inertia disk that can be mounted on either of the side flanges of the
final drive in their experiment. Hirasaka et al. [11] proposed an experimental method to study the body and
driveline sensitivity to unit transmission error of an axle hypoid gear pair. They estimated the force at the
contact points of the gears, and found that the dynamic mesh force was affected by the torsional vibration
characteristics of the driveline. Donley et al. [12] developed a dynamic model of a hypoid gear set for use in
finite element analysis of gearing systems. In their gear mesh model, the mesh point and line-of-action are time
invariant. More recently, Cheng and Lim [13–17] proposed a hypoid gear kinematic model based on exact gear
geometry for analyzing gear mesh mechanism and applied the corresponding linear dynamic model to study
the hypoid gear pair dynamics with transmission error excitation. They also studied the dynamics of hypoid
gear transmission with NLTV mesh characteristics. Later Jiang and Lim [18] derived a NLTV dynamic model
of a hypoid gear pair to investigate geared system response. They described the mesh parameters, typically
represented by transmission error, contact stiffness, line-of-action and contact point, in the form of
Fig. 1. (a) Torsional vibration model of a hypoid gear pair and (b) coordinate systems for pinion and gear.
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fundamental harmonic that is a perfect sinusoid. Wang and Lim [19] developed a multipoint mesh model and
applied it to analyze the hypoid gear dynamics. In all of Cheng, Jiang andWang’s publications, the time-dependent
mesh parameters are expressed in the form of either fundamental harmonic or the first few harmonics.

In the present study, a general nonlinear time-varying (NLTV) dynamic model of a hypoid gear pair with
backlash nonlinearity is proposed, which is also applicable to spur, helical, spiral bevel and worm gears even
though that is not the primary focus of this investigation. Firstly, the fundamental harmonic form of gear
mesh parameters similar to earlier work described above is used to study the effects of mesh parameter
variations on dynamic response and the interactions between them and backlash nonlinearity. Here, the effects
of mesh stiffness variation, pinion and gear directional rotation radius variation and kinematic transmission
error variation are investigated. The analysis also examines the effects of mean load and mesh damping. Then,
unlike the harmonic form previously used, a new significantly more exact time-varying gear mesh model is
proposed and applied to further dynamic analysis. The new mesh coupling formulation is capable of
describing the true hypoid gear tooth contact characteristics, which is expected to yield more refined
prediction of dynamic response.

2. Mathematical model

The proposed generalized lumped parameter torsional vibration model of a hypoid gear is shown in
Fig. 1(a). In theory, this concept is also applicable to spur, helical, spiral bevel and worm gears as long as the
geometrical configuration is represented appropriately. Pinion and gear are modeled as rigid bodies with
rotational displacements as their coordinates. Gear mesh is simulated by a pair of stiffness and damping
elements along the line-of-action direction. Backlash nonlinearity and kinematic (also known as unloaded
static) transmission error are also included.

From the proposed concept, the equations of motion of the two dof torsional vibration model can be
derived as

Ip
€yp þ lpcmð

_d� _eÞ þ lpkmf ðd� eÞ ¼ Tp, (1a)

Ig
€yg � lgcmð

_d� _eÞ � lgkmf ðd� eÞ ¼ �Tg, (1b)

where Ip and Ig are mass moments of inertias of pinion and gear, Tp and Tg are mean load torques on pinion and
gear, km is mesh stiffness, cm is mesh damping coefficient, f(d�e) is a nonlinear displacement function of the
dynamic transmission error d and kinematic transmission error e. The dynamic transmission error d is defined as

d ¼ lpyp � lgyg, (2)

while the nonlinear displacement function f(d�e) is given by

f ðd� eÞ ¼

d� e� b; d� eXb;

0; �bod� eob

d� eþ b; d� ep� b;

8><
>: , (3)
Fig. 2. Dimensionless nonlinear displacement function.
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Fig. 3. Effect of mean load on frequency response: (a) ~Tp ¼ 0:1; (b) ~Tp ¼ 0:2; (c) ~Tp ¼ 0:4; (d) ~Tp ¼ 1:0; (e) ~Tp ¼ 2:0; (f) ~Tp ¼ 5:0;
n, & no impact;K, J single-sided impact; +, X double-sided impact; ———, NLTV (increasing frequency); - - - - - - - - - -, NLTV

(decreasing frequency); � � � � � � � � � � , LTV.
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Fig. 4. Typical frequency response and time history plots: (a) Frequency response for ~Tp ¼ 0:2; (b) time history at ~o ¼ 0:55; (c) time
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Fig. 5. Effect of mesh damping on frequency response. Lightly loaded case: ~Tp ¼ 0:2, (a) x ¼ 0.01, (b) x ¼ 0.03, (c) x ¼ 0.06, (d) x ¼ 0.12,
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where 2b is gear backlash. The directional rotation radii lp and lg for pinion and gear are in the form of

lp ¼ n
*

p � ð j
*

p � r
*

pÞ; lg ¼ n
*

g � ð r
*

g � j
*

gÞ, (4)

where r
*

p and r
*

g are the position vectors of mesh point in the coordinate system Sp and Sg as shown in
Fig. 1(b), n

*
p and n

*
g are the unit normal vectors of mesh point, and j

*

p and j
*

g are the unit vectors along pinion
and gear rotating axis.

From earlier study, we know that there are two modes expressed in Eq. (1). One is the rigid body rotation
and the other is the out-of-phase gear pair torsion that is known as the primary source of excessive gear whine
response. Using p ¼ d�e, Eqs. (1a) and (1b) can be reduced to a single dof equation that only describes the
out-of-phase torsion mode as a perturbation about the rigid body motion. Since ll changes little with time
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Fig. 6. Effect of mesh stiffness variation on frequency response. Lightly loaded case: ~Tp ¼ 0:2, (a) ~ka1 ¼ 0, (b) ~ka1 ¼ 0:1, (c) ~ka1 ¼ 0:2,
(d) ~ka1 ¼ 0:3. Heavily loaded case: ~Tp ¼ 2, (e) ~ka1 ¼ 0, (f) ~ka1 ¼ 0:1, (g) ~ka1 ¼ 0:2, (h) ~ka1 ¼ 0:3. n, & no impact; K, J single-sided

impact; +, X double-sided impact; ———, NLTV (increasing frequency); – - - - - - - - - -, NLTV (decreasing frequency).



ARTICLE IN PRESS
J. Wang et al. / Journal of Sound and Vibration 308 (2007) 302–329 309
_ll ¼
€ll ¼ 0 can be assumed in the derivation in order to obtain the reduced order, definite form equation of

motion

me €pþ cm _pþ kmf ðpÞ ¼ me

lpTp

Ip

þ
lgTg

Ig

� €e

� �
, (5a)

me ¼ 1=ðl2p=Ip þ l2g=IgÞ; f ðpÞ ¼

p� b; pXb;

0; �bopob

pþ b; pp� b:

8><
>: , (5b)
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Next, assuming the following set of dimensionless parameters: ~p ¼ p=b, ~t ¼ ont, ~o ¼ o=on, ~lp ¼ lp=lpm,
~lg ¼ lg=lgm, ~k ¼ km=kmm and ~e ¼ e=b, a general dimensionless NLTV form of Eq. (5) can be obtained as

~p00 þ 2xð~l
2

p þ Z~l2gÞ ~p
0 þ

~l
2

p þ Z~l2g
1þ Z

~kf ð ~pÞ ¼ ~Tp
~lp þ ~Tg

~lg � ~e
00, (6a)

on ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmm=mem

p
, (6b)

mem ¼ 1=ðl2pm=Ip þ l2gm=IgÞ, (6c)
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Table 1

Baseline system parameters for a typical automotive hypoid gear pair

Number of pinion teeth 10

Number of gear teeth 43

Pinion offset (m) 0.0318

Gear pitch radius (m) 0.168

Pinion pitch radius (m) 0.048

Mass moment of inertia of pinion (kgm2) 0.002

Mass moment of inertia of gear (kgm2) 0.05

Backlash (mm) 20

Mesh damping ratio 0.03

J. Wang et al. / Journal of Sound and Vibration 308 (2007) 302–329312
x ¼
l2pmcm

2Ipon

, (6d)

Z ¼
l2gmIp

l2pmIg

, (6e)
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~Tp ¼
lpmTp

bo2
nIp

, (6f)

~Tg ¼ Z ~Tp, (6g)

where kmm is mean mesh stiffness, and lpm and lgm are mean directional rotation radii of pinion and gear,
respectively. The dimensionless nonlinear displacement function f ð ~pÞ as shown in Fig. 2 is

f ð ~pÞ ¼

~p� 1; ~pX1;

0; �1o ~po1

~pþ 1; ~pp� 1:

8><
>: , (7)

If there is no gear backlash, the nonlinear displacement function f ð ~pÞ ¼ ~p, and Eq. (6a) reduces to a linear
time-varying (LTV) form given by

~p00 þ 2xð~l
2

p þ Z~l2gÞ ~p
0 þ

~l
2

p þ Z~l2g
1þ Z

~k ~p ¼ ~Tp
~lp þ ~Tg

~lg � ~e
00. (8)

3. Systems with fundamental harmonic

First, we consider only the fundamental harmonic form of the time-varying mesh parameters to study the
effects of mesh parameter variations on tooth impact behavior and dynamic response. Dimensionless mesh
parameters such as dimensionless directional rotation radii of pinion and gear denoted by ~lp, ~lg, mesh stiffness
~k and kinematic transmission error ~e could be expressed as the Fourier series

~lp ¼ 1þ
X1
j¼1

~lpaj cosðj ~o~tþ fpjÞ, (9)

~lg ¼ 1þ
X1
j¼1

~lgaj cosðj ~o~tþ fgjÞ, (10)
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Fig. 11. Frequency response of exact mesh model and fundamental harmonic mesh model: (a) ~Tp ¼ 0:65 (125Nm); (b) ~Tp ¼ 2:01
(500Nm). ———, exact mesh model; � � � � � � � � � � , fundamental harmonic mesh model.
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~k ¼ 1þ
X1
j¼1

~kaj cosðj ~o~tþ fkjÞ, (11)

~e ¼
X1
j¼1

~eaj cosðj ~o~tþ fejÞ. (12)

In the fundamental harmonic form, they are written as

~lp ¼ 1þ ~lpa1 cosð ~o~tþ fp1Þ, (13)

~lg ¼ 1þ ~lga1 cosð ~o~tþ fg1Þ, (14)

~k ¼ 1þ ~ka1 cosð ~o~tþ fk1Þ, (15)

~e ¼ ~ea1 cosð ~o~tþ fe1Þ. (16)
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Substituting Eqs. (13)–(16) into Eq. (6a), a general NLTV equation of motion of a gear pair in the
fundamental harmonic form can be obtained as

~p00 þ 2xðð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ
2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2
Þ ~p0

þ
ð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ

2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2

1þ Z
ð1þ ~ka1 cosð ~o~tþ fk1ÞÞf ð ~pÞ

¼ ~Tp þ ~Tg þ ~Tp
~lpa1 cosð ~o~tþ fp1Þ þ

~Tg
~lga1 cosð ~o~tþ fg1Þ þ ~o2 ~ea1 cosð ~o~tþ fe1Þ. ð17Þ

Eq. (17) can be partially validated by considering the special case of a spur gear pair. For a spur gear pair,
~lp ¼

~lg ¼ 1, Eq. (17) can be reduced to the equation of motion proposed by Kahraman, which yielded good
predictions when compared to the benchmark experimental results [6],

~p00 þ 2x0 ~p0 þ ð1þ ~ka1 cosð ~o~tþ fk1ÞÞf ð ~pÞ ¼ ~Tp þ ~Tg þ ~o2 ~ea1 cosð ~o~tþ fe1Þ, (18)
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where x0 ¼ x(1+Z). Furthermore, the LTV equation of motion in fundamental harmonic form can be
expressed as

~p00 þ 2xðð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ
2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2
Þ ~p0

þ
ð1þ ~lpa1 cosð ~o~tþ fp1ÞÞ

2
þ Zð1þ ~lga1 cosð ~o~tþ fg1ÞÞ

2

1þ Z
ð1þ ~ka1 cosð ~o~tþ fk1ÞÞ ~p

¼ ~Tp þ ~Tg þ ~Tp
~lpa1 cosð ~o~tþ fp1Þ þ

~Tg
~lga1 cosð ~o~tþ fg1Þ þ ~o2 ~ea1 cosð ~o~tþ fe1Þ. ð19Þ

As there is no analytical method exists for the NLTV Eq. (17), the equation is solved by applying the
explicit Runge–Kutta integration routine with variable step that is generally applicable to strong nonlinearity.
The solution of numerical integration is time domain response ~p, and frequency response can be obtained by
root-mean-square (RMS) value ~prms of time domain response (with mean value removed) for each frequency.
The algorithm is implemented in MATLAB that is a widely used matrix and numerical analysis program [22].
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The effects of system parameters such as ~Tp, x, ~ka1, ~lpa1, ~lga1, ~ea1 and Z on the frequency response and tooth

impact regions are examined next. It may be also noted that tooth impacts may occur due to the gear backlash
nonlinearity. There are three possible types of tooth impacts cases: no impact, single-sided impact and double-

sided impact, as shown in Fig. 2. Since in most cases ~lpa1 is quite close to ~lga1, here we assume ~lpa1 ¼
~lga1 for

simplicity. For our subsequent numerical study, the baseline data used are ~Tp ¼ 2, x ¼ 0.03, ~ea1 ¼ 0:5,
~ka1 ¼ 0:05, ~lpa1 ¼

~lga1 ¼ 0:01, Z ¼ 0.75, fp1 ¼ fg1 ¼ 0, fk1 ¼ �4=5p, fe1 ¼ 1=2p.
3.1. Effect of mean load

The effect of mean load on dynamic response is shown in Fig. 3. For lightly loaded case where ~Tp ¼ 0:1, we
can see the rich nonlinear behaviors including jump discontinuities coupled with single-sided tooth impacts
(denoted by marker � and J for increasing and decreasing frequency, respectively) and double-sided tooth

impacts (denoted by marker + and X for increasing and decreasing frequency, respectively) dominating the

response. As ~Tp is increased to 0.2, the jump phenomenon can still be observed but the multivalued transition
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frequency region between the lower and upper jump discontinuities becomes narrower. Only two jump

discontinuities are seen for the case of ~Tp ¼ 0:4 in which one is a softening type and the other is a hardening

one. Moreover, wider range of no impacts (denoted by marker n and & for increasing and decreasing

frequency, respectively) appears and the response becomes more predictable. When ~Tp is increased further to

1.0, there exist only a softening type jump discontinuity and no significant impact behavior is observed. For
~Tp ¼ 5, the mean load becomes large enough to prevent tooth separations, and thus no tooth impacts and

jump discontinuities are observed. In this case, the overall frequency response appears linear. Clearly from
these results, the increase in mean load tends to decrease the degree of gear backlash nonlinearity.

The various cases of tooth impacts can be observed in the time history plots as shown in Fig. 4. For
~Tp ¼ 0:2 case, there is obviously no tooth impact at ~o ¼ 0:55 as shown in Fig. 4(b). As ~o increases to 0.625,
the amplitude of the response increases but still there is no tooth impact is observed as shown in Fig. 4(c). At
~o ¼ 0:7, the response amplitude increases considerably that causes the sharp jump up in amplitude along with
double-sided tooth impact similar to the behavior reported earlier in Jiang’s thesis [18]. At ~o ¼ 0:775, the
amplitude increases further and double-sided tooth impact remains dominant. When ~o increases to 0.85, the
amplitude of the response drops causing an abrupt jump down in amplitude as shown in the frequency
response. At this frequency point, the response becomes predominantly single-sided tooth impact behavior.
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3.2. Effect of mesh damping

Mesh damping ratio is another important parameter that affects the frequency response substantially as
shown in Fig. 5. As expected, the results show that the frequency response amplitude decreases as x is
increased for both lightly and heavily loaded cases. For light load case, as x is increased, the multivalued
frequency region becomes narrower and tooth impacts become alleviated. For heavy load case, x affects the
jump phenomenon and tooth impact region in a similar way to lightly loaded case but to a lesser extent. There
is no tooth impact observed at x ¼ 0.06, and further increase of x will only decrease the response amplitude
and make the response behaves more linearly. Hence, the increase in x tends to decrease the effect of backlash
nonlinearity.
3.3. Effect of mesh stiffness variation

The effect of mesh stiffness variation as the result of the period tooth engagement and disengagement
process is examined. As shown in Fig. 6 for light load cases, more jump discontinuities along with single- and
double-sided tooth impacts occur as ~ka1 is increased. However, the amplitude of ~prms does not increase by
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much. A parametric resonance at ~o ¼ 0:5 can be clearly observed as ~ka1 is increased to 0.3, which was also
identified by Kahraman [6]. For heavily loaded operating conditions, it can be seen that there is no jump
discontinuity at ~ka1 ¼ 0, only a small jump at ~ka1 ¼ 0:1, and very prominent jumps as ~ka1 is increased to 0.3.
More single and double-sided tooth impacts appear and the amplitude of ~prms increases with higher value of
~ka1. It indicates that mesh stiffness variation tends to aggravate the effect of backlash nonlinearity, especially
for heavily loaded operating condition. This was also found in an earlier study by Kahraman and Singh [6] for
spur gears. Furthermore, parametric resonance occurs more readily as ~ka1 is increased to 0.2 and 0.3 as shown
in Figs. 6(g) and (h).
3.4. Effect of directional rotation radius variation

The variation in directional rotation radius ~lpa1 is mainly due to the spatial-varying nature of the mesh
points. It can be affected by numerous geometrical factors such as tooth errors, gear eccentricity and shaft
misalignment. As shown in Fig. 7, for lightly loaded condition, more jump discontinuities along with double-
sided tooth impacts occur as ~lpa1 increases, but the amplitude of ~prms does not change considerably.
A parametric resonance can be seen to occur at ~o ¼ 0:5, as ~lpa1 is increased to 0.18, as shown in Fig. 7(d).
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For heavily loaded operating condition, although the response does not change much for ~lpa1 ¼ 0 and 0.1, the
jump behaviors become more prominent, tooth impacts occur more frequently and the response amplitude
increases considerably as ~lpa1 is increased to 0.15 and 0.18. Parametric resonance also occurs as shown in
Fig. 7(g) and (h). From these results, it can be concluded that the directional rotation radius variation does
aggravate the nonlinearity associated with gear backlash, especially for heavily loaded operation, which is
similar to the effect of mesh stiffness variation. However, ~lpa1 is a small value and it is within the range of
0.003–0.02 for most practical hypoid gear sets that we examined. Hence, under normal condition, it is not
expected to affect the dynamic response too much. Also, in a normal operating condition, a hypoid gear pair
rotates much more smoothly than a spur gear pair even though the line-of-action of the hypoid gear pair
changes all the time.
3.5. Effect of kinematic transmission error variation

The kinematic transmission error is a displacement excitation at the mesh point along the line-of-action due
to tooth profile deviations. The results are shown in Fig. 8. For lightly loaded case the predicted response
shows no jump discontinuity at ~ea1 ¼ 0:01, a softening jump when ~ea1 ¼ 0:1, both a softening jump and a
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hardening jump for ~ea1 ¼ 0:5, and very prominent jump behaviors for ~ea1 ¼ 0:8. As expected, no tooth impact
occurs for ~ea1 ¼ 0:01. Single-sided tooth impacts can be seen occurring within a small region around the
primary resonance for ~ea1 ¼ 0:1. However, when ~ea1 is increased to 0.5 and 0.8, obvious single- and double-
sided tooth impacts can be observed. The amplitude of ~prms clearly grows with increasing ~ea1. For heavily
loaded operating conditions, ~ea1 can also be seen to affect both jump discontinuity and tooth impact behavior,
but to a lesser extent. These results implicate that the kinematic transmission error variation also tends to
worsen the degree of backlash nonlinearity, especially for lightly loaded gear pair system.

3.6. Effect of system parameter Z

System parameter Z can be calculated from Z ¼ l2gmIp=l
2
pmIg as given in Eq. (6e). As shown in Fig. 9, the

response amplitude decreases as Z is increased for both lightly and heavily loaded cases. For lightly loaded
case, as Z is increased, we see less evidence of jump discontinuities along with single and double-sided tooth
impacts. At Z ¼ 6, there are no jump discontinuity and tooth impacts at all as shown in Fig. 9(e). For heavily
loaded operating condition, Z affects the jump phenomenon and tooth impact region in a similar way to lightly
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loaded case but to a lesser extent. At Z ¼ 1.5, there are no jumps nor tooth impacts, and further increase in Z
will only decrease the response amplitude and cause the response to appear linear. Hence, increasing Z
decreases the degree of backlash nonlinearity effect especially for light load.

4. Exact time-varying mesh model

A three-dimensional quasi-static-loaded tooth contact analysis is performed by using a highly refined gear
contact analysis program [20] to obtain the time-dependent mesh model. By condensing the results of the
contact analysis, the mesh parameters including pinion and gear directional rotation radii ~lp,~lg, mesh stiffness
~k, and kinematic transmission error ~e for each roll angle position are calculated as follows [21]. In contact
analysis the contact area is divided into many contact cells. The results of the tooth contact analysis consist of
the position vector r

*
i ¼ ð r

*
ix; r

*
iy; r

*
izÞ, the normal vector n

*
i ¼ ðn

*
ix; n

*
iy; n

*
izÞ, load fi of each cell i, loaded

transmission error eL and kinematic (unloaded) transmission error e for each roll angle. The total force can be
calculated as

Fx ¼
XN

i¼1

nixf i, (20a)

F y ¼
XN

i¼1

niyf i, (20b)

Fz ¼
XN

i¼1

nizf i (20c)

F total ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

x þ F2
y þ F 2

z

q
. (20d)

Then line-of-action (nx,ny,nz) can be obtained as

nx ¼ F x=F total, (21a)

ny ¼ F y=F total, (21b)

nz ¼ F z=F total. (21c)

The total moment can be derived as

Mx ¼
XN

i¼1

f i½nizriy � niyriz�, (22a)

My ¼
XN

i¼1

f i½nixriz � nizrix�, (22b)

Mz ¼
XN

i¼1

f i½niyrix � nixriy�. (22c)

Finally, the mesh point vector (x, y, z) is derived as

y ¼

PN
i¼1riyfiPN

i¼1f i

, (23a)

x ¼ ðMz þ FxyÞ=Fy, (23b)

z ¼ ðMy þ FzxÞ=Fx. (23c)
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Here, the mesh stiffness is defined as

km ¼ F total=ðeL � eÞ, (24)

where eL and e are loaded and kinematic (unloaded) transmission error along line-of-action direction.
The directional rotation radii lp and lg can be calculated by Eq. (4), and the dimensionless mesh parameters

can be calculated from

~lp ¼ lp=lpm, (25)

~lg ¼ lg=lgm, (26)

~k ¼ km=kmm, (27)

~e ¼ e=b. (28)

Unlike the harmonic form mentioned previously, the condensed mesh parameters ~lp, ~lg, ~k and ~e are

applied in an exact form using a fine interpolation scheme and fed into the subsequent dynamic model
represented by Eq. (6a). The explicit Runge–Kutta integration routine with variable step, which is
applicable to strong nonlinearity is applied in our analysis to solve the nonlinear ordinary differential
equation (6a). Frequency response is obtained by the RMS value of time domain response for each frequency.
The algorithm is also implemented in MATLAB [22]. Since the exact time-varying mesh model describes the
true, instantaneous gear mesh characteristics, it is expected to predict the gear dynamic response more
accurately.

A typical automotive hypoid gear pair is analyzed next to determine the capability of the proposed model.
Using the formulation provided above, the system parameters are shown in Table 1. The mesh parameters for
various levels of mean loads are calculated for each pinion roll angle position within one mesh cycle as shown

in Fig. 10. As expected the peak-to-peak values of ~lp,~lg and ~k decreases as mean load is increased, while the

kinematic transmission error ~e does not change at all. Then, ~lp, ~lg, ~k and ~e are inserted into the NLTV Eq. (6a)

for dynamic calculation.
The frequency response results of the exact time-varying mesh model and the fundamental harmonic mesh

model discussed previously are compared next. Then the effects of mean load and mesh damping are studied
since it is common knowledge that these two terms are important parameters affecting tooth impacts and
steady-state response.
4.1. Comparison of results of exact time-varying and fundamental harmonic mesh models

The frequency response results derived from the exact time-varying mesh model and the formulation in

fundamental harmonic form are compared in Fig. 11. For light load ~Tp ¼ 0:65, although the response of the

fundamental harmonic mesh model matches well with the exact time-varying mesh model at certain
frequencies especially when linear behavior exists, some discrepancies can be seen at frequencies containing

nonlinear response away from the fundamental mesh mode. For heavy load ~Tp ¼ 2:01, the fundamental

harmonic mesh response shows good agreement with the exact time-varying mesh response in most
frequency range except at low frequencies where off-resonance harmonics occur, which is not captured
by the simpler fundamental harmonic mesh form. These limited results basically indicate that the
proposed exact time-varying mesh model is able to predict the response governed by the fundamental
mesh harmonic as well as capture the additional nonlinear response due to the higher harmonics not
represented in the simpler fundamental mesh harmonic model. The differences between these two models are
more acute in lightly loaded condition since nonlinear response is more predominant in this case compared to
the heavier load case.
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4.2. Effect of mean load on tooth impact and steady-state response

4.2.1. Effect of mean load on tooth impact

The frequency response of the geared system of interest is computed for a set of mean loads ranging from

125 to 1000Nm. The results are given in Fig. 12. For the case of ~Tp ¼ 0:65, several jump discontinuities can be

observed and the response is dominated by single and double-sided impacts. As ~Tp is increased to 0.98, there

are only one softening jump and one hardening jump, and the tooth impacts occur primarily in a narrower

region of 0.775o ~oo1.3. For ~Tp ¼ 2:01, only a softening jump and a small region of tooth impacts occur near

the primary resonance. When ~Tp is increased to 3.28, there are no visible jump discontinuities and tooth

impacts at all. In this high mean load case, the dynamic response appears to behave quite linearly. Also, as ~Tp

is increased, the dynamic response amplitude decreased.
The above observation can be explained as follows. As seen in the earlier analysis, when mean load

increases, the degree of variations in the pinion and gear directional rotation radius and mesh stiffness
decrease. These smaller variations along with higher mean load reduce the degree of nonlinearity due to
backlash in the gear pair. Therefore, high mean load generally yields a more linear system response.
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4.2.2. Effect of mean load on steady-state response

The results of the effect of mean load are re-plotted in Fig. 13 to highlight its influence on steady-state

response. As observed in Fig. 13 for ~Tp ¼ 0:65 case (light load condition), a substantial region of

subharmonic, quasi-periodic or chaotic response is seen. As ~Tp is increased to 0.98, the sub-harmonic response

begin to weaken and can only be found around ~o ¼ 1:975. For ~Tp ¼ 2:01 and 3.28 cases, the frequency

response becomes completely period-one. Further clarity on the effect of mean load on frequency response can
be obtained by examining the predicted data in other forms as discussed next.

The time history function, phase plane plot, Poincare map and fast Fourier transform (FFT) spectrum plots
of the steady-state responses at ~o ¼ 1:975 for numerous mean loads are compared in Figs. 14–17. Fig. 14

shows chaotic response for the case of ~Tp ¼ 0:65. Here, the time history is non-periodic (period-N),

Poincare map contains as many discrete points as the number of periods used in the dynamic analysis, and

FFT spectrum depicts broad band characteristic. For ~Tp equals 0.98, a period-two subharmonic response can

be seen at ~o ¼ 1:975, as shown in Fig. 15. The time history possesses a period equal to 2T (T ¼ 2p= ~o),
Poincare map has two discrete points, and FFT spectrum contains a peak at mesh order 1

2
in addition to

response peaks at orders 1 and 2. Figs. 16 and 17 for ~Tp ¼ 2:01 and 3.28 show period-one responses where
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Fig. 22. Period-one response for x ¼ 0.06, ~o ¼ 1:8625: (a) time history; (b) phase plane; (c) Poincare map; (d) FFT spectrum.
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their time history functions have a period T, Poincare map shows one discrete points, and FFT spectrum
contains only peaks only at mesh orders 1 and 2. These results show that when mean load is progressively
increased, the initial chaotic response at ~o ¼ 1:975 becomes period-two sub-harmonic response, and
subsequently period-one response.

4.3. Effect of mesh damping on tooth impact and steady-state response

4.3.1. Effect of mesh damping on tooth impact

Next, the effect of mesh damping on tooth impact behavior and steady-state response is investigated using
the results shown in Figs. 18 and 19. For light damping x ¼ 0.01, several jump discontinuities can be seen to
occur, and both single- and double-sided impacts dominate the response. As x is increased to 0.03, the extent
and severity of jumps and tooth impacts reduce. For x ¼ 0.06 case, only a small number of jumps can be
observed and tooth impacts disappear further in the off-resonance region. When x is increased to 0.12, there
are no observable jumps and only a narrow region around the primary gear pair torsional resonance is
dictated by single-sided impacts. The response amplitude also decreases considerably as x is increased, as
expected. From these plots, we can conclude that the increase in x will cause the dynamic response to behave
more linearly.
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4.3.2. Effect of mesh damping on steady-state response

The results of the effect of mesh damping are re-plotted in Fig. 19 to highlight its influence on steady-state
response. In Fig. 19(a), the response for lightly damped x ¼ 0.01 case is shown. In this figure, we can see that
several regions are dominated by sub-harmonic, quasi-periodic or chaotic responses. As x is increased to 0.03,
sub-harmonic, quasi-periodic or chaotic responses can be found only in a region at high frequencies. For
x ¼ 0.06 and 0.12, there are only period-one steady-state responses over the entire frequency range of interest.
The effect of mesh damping on frequency response can be seen more clearly by examining the predicted data
in other forms like in the above mean load parametric analysis.

The time history function, phase plane plot, Poincare map and FFT spectrum plots of the steady-state
responses at ~o ¼ 1:8625 for numerous mesh damping values are compared in Figs. 20–23. As shown in
Fig. 20, for x ¼ 0.01 chaotic response is obtained. Time history is non-periodic, Poincare map contains as
many discrete points as the number of periods used in the dynamic analysis, and FFT spectrum depicts broad
band characteristic. Fig. 21 for x ¼ 0.03 shows period-six sub-harmonic response. The time history possesses a
period equal to 6T, Poincare map has six discrete points, and FFT spectrum contains peaks at mesh orders
equal to multiples of 1/6 in addition to orders 1 and 2. Figs. 22 and 23 for x ¼ 0.06 and 0.12 show period-one
responses where their time history functions have a period T, Poincare map shows one discrete points, and
FFT spectrum contains peaks only at mesh orders 1 and 2. Here, it is shown that when mesh damping ratio is
increased, the initial chaotic response at ~o ¼ 1:8625 progressively transforms into period-six subharmonic
response, and subsequently period-one response.
5. Concluding remarks

A general NLTV torsional vibration model of a hypoid gear pair is proposed which considers backlash
nonlinearity and time-dependent mesh point, line-of-action, mesh stiffness and kinematic transmission error.
The theory is also applicable to spur, helical, spiral bevel gears and worm gears even though the focus here is
primarily on hypoid gear. Mesh parameters are first expressed in the fundamental harmonic form to study the
effects of their variations on tooth impact regions, dynamic response and the interactions between them and
backlash nonlinearity. In this study, the effects of pinion and gear directional rotation radius variation and its
interaction on backlash nonlinearity are investigated for the first time. Other important parameters like mean
load and mesh damping, are also examined. It is shown that an increase of mean load, mesh damping and
system parameter Z, and a decrease of mesh stiffness variation, directional rotation radius variation and
kinematic transmission error variation will decrease the degree of gear backlash nonlinearity effect. Mesh
damping, system parameter Z and kinematic transmission error variations affect lightly loaded cases more
than heavily loaded ones, while mesh stiffness variation and directional rotation radius variations affect
heavily loaded cases more than lightly loaded systems.

Secondly, a new exact time-varying coupling mesh model is proposed which can describe hypoid gear mesh
characteristics more accurately and thus is expected to yield a better prediction of dynamic response. It is
applied to subsequent dynamic analysis and the effects of mean load and mesh damping on tooth impact and
steady-state response have been examined. Numerous nonlinear behaviors such as jump discontinuities,
sub-harmonic and chaotic responses are observed, especially for lightly loaded and lightly damped cases. The
results show that mean load and mesh damping are two key factors determining the conditions for tooth
impact behavior, and subharmonic and chaotic responses.

The proposed single-dof NLTV model will be extended to a higher-dof model to better describe the hypoid
gear pair dynamics. Also, the stability of steady-state responses will be analyzed in the future.
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